The full load current calculator calculates the full load current for 1-phase AC, 3-phase AC and DC loads in kW, kVA or hp. Includes step-by-step equations.

Voltage (V)

Load rating (A, hp, kW or kVA)
pf

## Full Load Current Calculator Parameters

• Voltage (V):
• Specify the phase-to-phase VLL voltage for a 3-phase AC supply in volts.
• Specify the the phase-to-neutral VLN voltage for a 1-phase AC or DC supply.
• Select the phase arrangement: 1 Phase AC,  3 phase AC, or DC.
• Load (S): Specify the the load in kW, kVA, A, or hp. And specify the load power factor (pf) (cosΦ) when the load is specified in kW or hp.

## Full load current calculation for a 3-phase AC supply:

The full load current for a 3-phase load in kW is calculated as:

$$I=\displaystyle\frac{1000 \cdot S_{kW}} {\sqrt{3} \cdot V_{LL} \cdot \cos{\phi} }$$

Where:

• SkW: Is the rated power in kilowatt (kW)
• VLL: Is the line-to-line (phase-to-phase) voltage in volts.
• cosΦ: Is the load power factor.

The full load current for a 3-phase load in kVA is calculated as:

$$I=\displaystyle\frac{1000 \cdot S_{kVA}} {\sqrt{3} \cdot V_{LL} }$$

The full load current for a 3-phase load in hp is calculated as:

$$I=\displaystyle\frac{745.7 \cdot S_{hp}} {\sqrt{3} \cdot V_{LL} \cdot \cos{\phi} }$$

## Full load current calculation for a 1-phase AC supply:

The full load current for a 1-phase load in kW is calculated as:

$$I=\displaystyle\frac{1000 \cdot S_{kW}} {V_{LN} \cdot \cos{\phi} }$$

The full load current for a 1-phase load in kVA is calculated as:

$$I=\displaystyle\frac{1000 \cdot S_{kVA}} {V_{LN} }$$

The full load current for a 1-phase load in hp is calculated as:

$$I=\displaystyle\frac{745.7 \cdot S_{hp}} {V_{LN} \cdot \cos{\phi} }$$

## Full load current calculation for a DC supply:

The full load current for a DC load in kW is calculated as:

$$I=\displaystyle\frac{1000 \cdot S_{kW}} {V_{LN} }$$

The full load current for a DC load in kVA is calculated as:

$$I=\displaystyle\frac{1000 \cdot S_{kVA}} {V_{LN} }$$

The full load current for a DC load in hp is calculated as:

$$I=\displaystyle\frac{745.7 \cdot S_{hp}} {V_{LN} }$$